
Demand Paging and Page
Replacement Algorithms

ECE 469, April 03

Aravind Machiry

1

Handling low memory

• Suppose you have 8GB of main memory

• Can you run a program that its program size is 16GB?
• Yes, you can load them part by part

• This is because we do not use all of data at the same time

• Can your OS do this execution seamlessly to your application?

2

Memory Hierarchy

DISK
(TB? PB?)

Main Memory
(GB)

Cache
(MB)

Reg
(KB)

FAST Expensive

SIZE

3

Memory Swapping

● Use disk as backing store under memory pressure

4

Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

5

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Memory Swapping - Removing a page

6

Memory Swapping - Removing a page
Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

DISK 0xf0200000

7

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Memory Swapping - Removing a page

8

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Memory Swapping - Removing a page

9

Swapping - Transparently load page from disk

• Page fault handler

10

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

11

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

12

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

13

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk

14

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

15

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource

16

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource

• Load that page into physical memory

17

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and
• The faulting page of the current process is stored in the disk

• Lookup disk if it swapped put 0xf0200000 of this environment (process)
• This must be per process because virtual address is per-process resource

• Load that page into physical memory
• Map it and then continue!

18

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

19

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

20

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

21

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

Create new map!

22

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

Create new map!

Continue!

23

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Selecting Page to Swap out!

Which page to
swap out?

24

System at Full Memory Capacity

● Expect to run with all phy. pages in use

● Every “page-in” requires an eviction

25

System at Full Memory Capacity

● Expect to run with all phy. pages in use

● Every “page-in” requires an eviction

● Goal of page replacement

● Maximize hit rate -> kick out the page that’s least useful

26

System at Full Memory Capacity

● Expect to run with all phy. pages in use

● Every “page-in” requires an eviction

● Goal of page replacement

● Maximize hit rate -> kick out the page that’s least useful

● Challenge: how do we determine utility?

● Kick out pages that aren’t likely to be used again

27

System at Full Memory Capacity

● Expect to run with all phy. pages in use

● Every “page-in” requires an eviction

● Goal of page replacement

● Maximize hit rate -> kick out the page that’s least useful

● Challenge: how do we determine utility?

● Kick out pages that aren’t likely to be used again

● Page replacement is a difficult policy problem

28

Finding Least Useful Page is Hard
● Don’t know future!

29

Finding Least Useful Page is Hard
● Temporal Locality:

● Past behavior is a good indication of future behavior! (e.g. LRU)

● Perfect (past) reference stream hard to get
● Every memory access would need bookkeeping
● Is this feasible (in software? In hardware?)

30

Finding Least Useful Page is Hard
● Temporal Locality:

● Past behavior is a good indication of future behavior! (e.g. LRU)

● Perfect (past) reference stream hard to get
● Every memory access would need bookkeeping
● Is this feasible (in software? In hardware?)

● Minimize overhead
● If no memory pressure, ideally no bookkeeping
● In other words, make the common case fast (page hit)

31

Finding Least Useful Page is Hard
➔ Get imperfect information, while guaranteeing foreground perf

● What is minimum hardware support that need to added?

32

Definitions
(or Jargons asked during interviews)

● Pressure – the demand for some resource (often used when demand
exceeds supply)
ex: the system experienced memory pressure

● Eviction – throwing something out
ex: cache lines and memory pages got evicted

● Pollution – bringing in useless pages/lines
ex: this strategy causes high cache pollution

33

Definitions

● Thrashing – extremely high rate of moving things in and out (usually
unnecessarily)

● Locality – re-use – it makes the world go rounds!

● Temporal Locality – re-use in time

● Spatial Locality – re-use of close by locations

34

Performance metric for Page Replacement
algorithms

● Give a sequence of memory accesses, minimize the # of page faults

● Similar to cache miss rate

● What about hit latency and miss latency?

35

First In First Out (FIFO)

● Algorithm

● Throw out the oldest page

● Pros

● Low-overhead implementation

● Cons

● No frequency/no recency 🡪 may replace the heavily used pages

5 3 4 7 9 11 2 1 15Recently
loaded

Page
out

36

First In First Out (FIFO)

● For a given set of page references, what happens when we increase
the physical memory?

37

First In First Out (FIFO)

● For a given set of page references, what happens when we increase
the physical memory?

● Expected: Number of page faults decreases.

● Are your sure!?

38

Belady’s anomaly
Belady's anomaly: Laszlo Belady states that it is possible to have more

page faults when increasing the number of page frames.

Previously, it was believed that an increase in the number of page frames
would always provide the same number or fewer page faults.

http://en.wikipedia.org/wiki/Laszlo_Belady

39

Example
Page Requests

321032432104

40

Example (Page Faults in Red)

Frame 1

Frame 2

Frame 3

3 2 1 0 3 2 4 3 2 1 0 4

3 3 3 0 0 0 4 4 4 4 4 4

2 2 2 3 3 3 3 3 1 1 1

1 1 1 2 2 2 2 2 0 0

Page Requests – 3 frames

Total Page Faults: 9

41

Example (Page Faults in Red)

Frame 1

Frame 2

Frame 3

Frame 4

3 2 1 0 3 2 4 3 2 1 0 4

3 3 3 3 3 3 4 4 4 4 0 0

2 2 2 2 2 2 3 3 3 3 4

1 1 1 1 1 1 2 2 2 2

0 0 0 0 0 0 1 1 1

Page Requests – 4 frames

Total Page Faults: 10

42

Ideal curve of # of page faults v.s.
of physical pages

43

FIFO illustrating Belady’s anomaly

44

Optimal or MIN
● Algorithm (also called Belady’s Algorithm)

● Replace the page that won’t be used for the longest time

● Pros

● Minimal page faults (can you prove it?)

● Used as an off-line algorithm for perf. analysis

● Cons

● No on-line implementation

● What was the CPU scheduling algorithm of similar nature?

45

Predicting Future based on Past

● “Principle of locality”

● Recency:

● Page recently used are likely to be used again in the near future

● Frequency:

● Pages frequently used (recently) are likely to be used frequently
again in the near future

● Is this temporal or spatial locality?

46

How to record locality?

● Software Solution!?

47

How to record locality?

● Can hardware give any hints?

48

How to record locality?

● Can hardware give any hints?

49

How to record locality?

● Can hardware give any hints?

Accessed or Reference bit: A hardware bit that is set whenever the page is
referenced (read or written)

50

FIFO with Second Chance

● Algorithm
● Check the reference-bit of the oldest page (first in)
● If it is 0, then replace it
● If it is 1, clear the referent-bit, put it to the end of the list, and continue searching

● Pros
● Fast
● Frequency 🡪 do not replace a heavily used page

● Cons
● The worst case may take a long time

5 3 4 7 9 11 2 1 15
Recently
loaded

Page
out

If reference bit is 1

51

Clock: a simple FIFO with 2nd chance

● FIFO clock algorithm

● Maintain the list of page frames

● Hand points to the oldest page

● On a page fault, follow the hand to inspect pages

● Second chance

● If the reference bit is 1, set it to 0 and advance the hand

● If the reference bit is 0, use it for replacement

● What is the difference between Clock and the previous one?
● Mechanism vs. policy?

Page Frames
0: ref: 0

1: ref: 1

2: ref: 1

3: ref: 0

4: ref: 0

52

Clock: a simple FIFO with 2nd chance
Page Frames

0: ref: 0

1: ref: 1

2: ref: 1

3: ref: 0

4: ref: 0

● What happens if all reference bits are 1?

● What does it suggest if observing clock hand is sweeping very fast?

● What does it suggest if clock hand is sweeping very slow?

53

Least Recently Used (LRU)

● Algorithm

● Replace page that hasn’t been used for the longest time

● Advantage: with locality, LRU approximates Optimal

54

Implementing LRU: software

● A doubly linked list of pages

● Every time page is referenced, move it to the front of the list

● Page replacement: remove the page from back of list

● Avoid scanning of all pages

● Problem: too expensive

● Requires 6 pointer updates for each page reference info

● High contention on multiprocessor

55

Least Recently Used (LRU)

● What hardware mechanisms are required to implement LRU?

56

Implementing LRU: hardware/software

● A timestamp for each page

● Every time page is referenced, save system clock into the timestamp of
the page

● Page replacement: scan through pages to find the one with the oldest
clock

● Problem: have to search all pages/counters!

57

Approximate LRU

Most recently used Least recently used
N categories

pages in order of last
reference

Exact
LRU

Crude
LRU

2
categories
(roughly)

pages referenced since
the last page fault

pages not referenced
since the last page fault

. . . 2552540 1 2 38-bit
count

256
categories

Keep 8-bit counter for each page in a table in memory

58

Approximate LRU

00000000

00000000

00000000

00000000

Initial

Page Table

Initial

Ref Frame #

0 3

0 2

0 0

0 1

59

Approximate LRU

00000000

00000000

00000000

00000000

Initial

Ref Frame #

0 3

1 2

0 0

0 1

Page Table

Interval 1

00000000

00000000

10000000

00000000

Interval 1

Ref Frame #

0 3

0 2

0 0

0 1

Page Fault Victim?

60

Approximate LRU

00000000

00000000

00000000

00000000

Initial

Ref Frame #

0 3

1 2

0 0

1 1

Page Table

Interval 2

00000000

00000000

10000000

00000000

Interval 1

Ref Frame #

0 3

0 2

0 0

0 1

10000000

00000000

11000000

00000000

Interval 2

Page Fault Victim?

61

Approximate LRU

00000000

00000000

00000000

00000000

Initial

Ref Frame #

0 3

1 2

1 0

0 1

Page Table

Interval 3

00000000

00000000

10000000

00000000

Interval 1

Ref Frame #

0 3

0 2

0 0

0 1

10000000

00000000

11000000

00000000

Interval 2

01000000

10000000

11100000

00000000

Interval 3

Page Fault Victim?

62

Approximate LRU

00000000

00000000

00000000

00000000

Initial

Ref Frame #

1 3

0 2

0 0

1 1

Page Table

Interval 4

00000000

00000000

10000000

00000000

Interval 1

Ref Frame #

0 3

0 2

0 0

0 1

10000000

00000000

11000000

00000000

Interval 2

01000000

10000000

11100000

00000000

Interval 3

10100000

01000000

01110000

10000000

Interval 4

Page Fault Victim?

63

Approximate LRU

00000000

00000000

00000000

00000000

Initial

Ref Frame #

0 3

0 2

1 0

0 1

Page Table

Interval 5

00000000

00000000

10000000

00000000

Interval 1

Ref Frame #

0 3

0 2

0 0

0 1

10000000

00000000

11000000

00000000

Interval 2

01000000

10000000

11100000

00000000

Interval 3

10100000

01000000

01110000

10000000

Interval 4

01010000

10100000

01110000

01000000

Interval 5

Page Fault Victim?

64

Approximate LRU

00000000

00000000

00000000

00000000

Initial

00000000

00000000

10000000

00000000

Interval 1

10000000

00000000

11000000

00000000

Interval 2

01000000

10000000

11100000

00000000

Interval 3

10100000

01000000

01110000

10000000

Interval 4

01010000

10100000

01110000

01000000

Interval 5

● Algorithm
● At regular interval, OS shifts reference bits (in PTE) into counters (and clear reference bits)

● Replacement: Pick the page with the “smallest counter”

● How many bits are enough?
● In practice 8 bits are quite good

● Pros: Require one reference bit, small counter/page

● Cons: Require looking at many counters (or sorting)

65

Which page to evict? (Victim page)

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Accessed Heavily

Accessed Rarely

Heat map of the page usages.

Modified by
the process

(dirty)

66

We have focused on miss rate. What about miss
latency?

● Key observation: it is cheaper to pick a “clean” page over a
“dirty” page
● Clean page does not need to be swapped to disk

● Challenge:
● How to get this info?

67

Let's look back at PTE entries!

68

Dirty Bit - Modified bit

69

Enhanced FIFO with 2nd Chance

Ref, Mod Needed Soon? Replacement Cost? Preference

0, 0 Unlikely Low (Drop the page) 😍
0, 1 Unlikely High (Write to disk) 😄
1, 0 Likely Low (Drop the page) 😊
1, 1 Likely High (Write to disk) 😟

Same as the basic FIFO with 2nd chance, except that it considers both
(reference bit, modified bit)

70

Enhanced FIFO with 2nd Chance

● On page fault, follow hand to inspect pages:
● Round 1:

● If bits are (0,0), take it

● if bits are (0,1), record 1st instance

● Clear ref bit for (1,0) and (1,1), if (0,1) not found yet

● At end of round 1, if (0,1) was found, take it

● If round 1 does not succeed, try 1 more round

71

Summary: Page Replacement Algorithms

● Optimal

● FIFO

● Random

● Approximate LRU (NRU)

● FIFO with 2nd chance

● Clock: a simple FIFO with 2nd chance

● Enhanced FIFO with 2nd chance

